Heat Transfer Calculator
Easily calculate heat transfer via Conduction, Convection or Radiation.
Select the Type of Calculation You Want to Perform
Heat Transfer by Conduction
Conduction is the transfer of heat within a material or between two regions of a material at different temperatures by molecular vibrations. It is calculated by Fourier's Law.
$ Q = -k A \frac{dT}{dx} $
Basitleştirilmiş hali ($ \Delta T $ ve $ L $ kullanılarak):
$ Q = k A \frac{\Delta T}{L} $
- $ \mathbf{Q} $: Isı transfer hızı (Watt)
- $ \mathbf{k} $: Isı iletim katsayısı (malzemenin ısıyı ne kadar iyi ilettiği)
- $ \mathbf{A} $: Isının transfer olduğu yüzey alanı
- $ \mathbf{\Delta T} $: Sıcaklık farkı ($ T_{yüksek} - T_{düşük} $)
- $ \mathbf{L} $: Isının transfer olduğu malzemenin kalınlığı
What is Heat Transfer?
**Heat transfer** refers to the flow of energy from a hotter system to a cooler system. This process occurs spontaneously according to the second law of thermodynamics and continues as long as there are temperature differences. In engineering, it is of vital importance in many areas, from the heating and cooling of buildings to the thermal management of electronic devices.
There are three basic heat transfer mechanisms:
1. Conduction
Isının doğrudan temas halindeki maddeler arasında moleküler titreşimler ve serbest elektronlar aracılığıyla transferidir. Katılarda en yaygın olanıdır. Malzemenin ısı iletkenliği ($ k $) bu mekanizmada kritik rol oynar.
$ Q_{iletil} = k A \frac{\Delta T}{L} $
2. Convection
Isının bir yüzey ile hareketli bir akışkan (sıvı veya gaz) arasında transferidir. Akışkanın hareketi ısıyı taşır. Doğal (yoğunluk farklarıyla) ve zorlamalı (pompa/fan ile) konveksiyon olmak üzere iki türü vardır. Konveksiyon ısı transfer katsayısı ($ h $) bu mekanizmada önemlidir.
$ Q_{taşınım} = h A (T_s - T_{\infty}) $
3. Radiation
It is the transfer of heat by electromagnetic waves (usually infrared radiation). It does not require a material medium and can occur even in a vacuum (e.g. heat transfer from the Sun to the Earth). It is calculated by the Stefan-Boltzmann Law.
$ Q_{ışınım} = \epsilon \sigma A (T_s^4 - T_{çevre}^4) $
Common Unit Conversions and Constants
- **Heat Transfer Rate (Q):** Usually Watt (W) or Btu/hr (Btu/hr)
- **Temperature:** Kelvin (K), Celsius (°C), Fahrenheit (°F). Absolute temperatures (Kelvin) should always be used.
- **Area (A):** Square metre (m²) or square feet (ft²)
- **Stefan-Boltzmann Sabiti ($ \sigma $):** $ 5.67 \times 10^{-8} \text{ W/(m²·K}^4) $
Application Areas:
- Building Design: Calculation of energy efficiency, heating and cooling loads of buildings.
- Automotive Industry: Engine cooling systems, exhaust heat management.
- Electronic Cooling: Preventing computer processors and other electronic components from overheating.
- Food Processing: The processes of cooking, cooling and freezing food.
- Power Plants: Design of steam boilers, condensers and heat exchangers.
This calculator is designed to apply the fundamental principles of heat transfer. In real world applications, homogeneity of materials, surface roughness, fluid dynamics and other complex factors can affect the results. In particular, convection and radiation coefficients can vary greatly depending on the conditions. Precision engineering applications may require more detailed analysis, experimental data and advanced simulations.